Pysam
This applet performs a SAMtools count on an input BAM using Pysam, a python wrapper for SAMtools.
Pysam is provided through a
pip3 install
using the pip3 package manager in the dxapp.json
’s runSpec.execDepends
property:{
"runSpec": {
...
"execDepends": [
{"name": "pysam",
"package_manager": "pip3",
"version": "0.15.4"
}
]
...
}
The
execDepends
value is a JSON array of dependencies to resolve before the applet source code is run. In this applet, we specify pip3
as our package manager and pysam version 0.15.4
as the dependency to resolve.The fields
mappings_sorted_bam
and mappings_sorted_bai
are passed to the main function as parameters for our job. These parameters are dictionary objects with key-value pair {"$dnanexus_link": "<file>-<xxxx>"}
. We handle file objects from the platform through DXFile handles. If an index file is not supplied, then a *.bai
index will be created. print(mappings_sorted_bai)
print(mappings_sorted_bam)
mappings_sorted_bam = dxpy.DXFile(mappings_sorted_bam)
sorted_bam_name = mappings_sorted_bam.name
dxpy.download_dxfile(mappings_sorted_bam.get_id(),
sorted_bam_name)
ascii_bam_name = unicodedata.normalize( # Pysam requires ASCII not Unicode string.
'NFKD', sorted_bam_name).encode('ascii', 'ignore')
if mappings_sorted_bai is not None:
mappings_sorted_bai = dxpy.DXFile(mappings_sorted_bai)
dxpy.download_dxfile(mappings_sorted_bai.get_id(),
mappings_sorted_bai.name)
else:
pysam.index(ascii_bam_name)
Pysam provides several methods that mimic SAMtools commands. In our applet example, we want to focus only on canonical chromosomes. Pysam’s object representation of a BAM file is
pysam.AlignmentFile
. mappings_obj = pysam.AlignmentFile(ascii_bam_name, "rb")
regions = get_chr(mappings_obj, canonical_chr)
The helper function
get_chr
def get_chr(bam_alignment, canonical=False):
"""Helper function to return canonical chromosomes from SAM/BAM header
Arguments:
bam_alignment (pysam.AlignmentFile): SAM/BAM pysam object
canonical (boolean): Return only canonical chromosomes
Returns:
regions (list[str]): Region strings
"""
regions = []
headers = bam_alignment.header
seq_dict = headers['SQ']
if canonical:
re_canonical_chr = re.compile(r'^chr[0-9XYM]+$|^[0-9XYM]')
for seq_elem in seq_dict:
if re_canonical_chr.match(seq_elem['SN']):
regions.append(seq_elem['SN'])
else:
regions = [''] * len(seq_dict)
for i, seq_elem in enumerate(seq_dict):
regions[i] = seq_elem['SN']
return regions
Once we establish a list of canonical chromosomes, we can iterate over them and perform Pysam’s version of
samtools view -c
, pysam.AlignmentFile.count
. total_count = 0
count_filename = "{bam_prefix}_counts.txt".format(
bam_prefix=ascii_bam_name[:-4])
with open(count_filename, "w") as f:
for region in regions:
temp_count = mappings_obj.count(region=region)
f.write("{region_name}: {counts}\n".format(
region_name=region, counts=temp_count))
total_count += temp_count
f.write("Total reads: {sum_counts}".format(sum_counts=total_count))
Our summarized counts are returned as the job output. We use the
dx-toolkit
python SDK’s dxpy.upload_local_file
function to upload and generate a DXFile corresponding to our tabulated result file. counts_txt = dxpy.upload_local_file(count_filename)
output = {}
output["counts_txt"] = dxpy.dxlink(counts_txt)
return output
Python job outputs have to be a dictionary of key-value pairs, with the keys being job output names as defined in the
dxapp.json
file and the values being the output values for corresponding output classes. For files, the output type is a DXLink. We use the dxpy.dxlink
function to generate the appropriate DXLink value.Last modified 3yr ago